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ABSTRACT

Toxins are detected in sporadic species along the
evolutionary tree of the animal kingdom. Venomous
animals include scorpions, snakes, bees, wasps,
frogs and numerous animals living in the sea such
as the stonefish, snail, jellyfish, hydra and more.
Interestingly, proteins that share a common scaffold
with animal toxins also exist in non-venomous spe-
cies. However, due to their short length and primary
sequence diversity, these, toxin-like proteins remain
undetected by classical search engines and genome
annotation tools. We construct a toxin classification
machine and web server called ClanTox (Classifier
of Animal Toxins) that is based on the extraction of
sequence-driven features from the primary protein
sequence followed by the application of a classifi-
cation system trained on known animal toxins. For
a given input list of sequences, from venomous
or non-venomous settings, the ClanTox system
predicts whether each sequence is toxin-like.
ClanTox provides a ranked list of positively pre-
dicted candidates according to statistical confi-
dence. For each protein, additional information
is presented including the presence of a signal
peptide, the number of cysteine residues and the
associated functional annotations. ClanTox is a dis-
covery-prediction tool for a relatively overlooked
niche of toxin-like cell modulators, many of which
are therapeutic agent candidates. The ClanTox
web server is freely accessible at http://www.
clantox.cs.huji.ac.il.

INTRODUCTION

Animal toxins are one of the most highly over-represented
functional groups among the short proteins. Toxins are
proteins that appear in animal venom and are aimed at
inflicting harm to the organism on which the venom acts
(1,2). They are extremely varied in terms of function and
include ion channel inhibitors, phospholipases, protease

inhibitors, disintegrins, membrane pore inducers and
more (3,4).
In recent years, several proteins that resemble animal

toxins were identified in non-venomous contexts and
shown to act as cell activity modulators. These toxin-like
proteins include proteases, protease inhibitors, as well as
secreted proteins, which resemble cell antigens, growth
factors and more (5). A strong evolutionary relation
exists between animal toxins and ancestral cysteine
cross-linked proteins (6–8). One of the most striking exam-
ple is the set of human and rodent proteins exhibiting a
strong similarity to snake a-neurotoxins (9,10).
Animal toxins are very diverse set of proteins. Some

snake toxin metalloproteinases are >400 amino acids
and the length of the black widow spider latrotoxin is
>1500 amino acids. Other potent toxins like the conotox-
ins may be very short (10–20 amino acids). Nevertheless,
many of the animal toxins that appear in venom are rather
short (30–120 amino acids) and vary in sequence, structure
and function. Due to their short length and high sequence
variation, toxin-like proteins are unclassifiable by stan-
dard motif-detection or fold-recognition methods (4).
Based on these facts, we suspect that toxin-like proteins
are understudied. To remedy this situation, we have devel-
oped a classifier for ranking protein sequences according
to their toxin-like properties. We have extracted sequence-
driven properties to create a robust characterization of
toxin-like proteins. These properties include features of
structural stability, distribution and frequency of amino
acids, protein length and more (11). Application of the
classifier to the �10 000 predicted protein sequences
from the sequenced honeybee (Apis mellifera) genome
identified several toxin-like sequences, including some
that were previously unknown. For one of these
sequences, we confirmed an overlooked function of a vol-
tage-gated channel inhibitor (11).
Herein, we present the web-based classifier ClanTox

(Classifier of Animal Toxins), which can be used to con-
duct a large-scale search for toxin-like protein sequences
from a wide range of sequencing and transcriptomic data.
In addition to detecting animal toxins the ClanTox server
identifies additional short proteins that function as
cell modulators and are characterized by multiple
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scaffold-stabilizing disulfide-bridges. Among these are
metallothioneins, proteases and their inhibitors, defensins,
growth factors and a variety of proteins from the innate
immune systems (11). Many of these proteins are secreted
proteins that act in the extracellular milieu through bind-
ing to membrane receptors and ion channels. However,
other cysteine-rich proteins that do not adopt toxin-
like properties are predicted negative by the classifier
(e.g. ribosomal proteins). ClanTox performs best with
short sequences (<200 amino acids) or for longer proteins
that were separated by their individual domains. The rapid
expansion in mass spectrometry (MS) proteomics and
the depth of transcriptome coverage by new generation
sequencing suggests that ClanTox will become increas-
ingly useful as a discovery tool focusing attention on
short toxin-related and disulfide-containing proteins.

CLASSIFER DESCRIPTION

The classifier underlying ClanTox was derived by machine
learning on a set of true and false instances obtained from
a manually reviewed set of ion channel toxin inhibitors.
The ClanTox server takes a given set of proteins sequences
(�10 000) and sends them to the underlying classifier after
each sequence is translated into a vector of sequence-
derived global features (545 features). Specifically, the
vector is independently sent to 10 boosted-stump classi-
fiers, each of which produces a numerical result. During
the learning phase, for a given set of true instances, we
randomly generated 10 sets of false instances [as described
in (11)]. For each set of false instances we trained a para-
meter-tuned boosted stump classifier. The output of the 10
classifiers was normalized to the highest positive predic-
tion of each classifier. The final prediction of the meta-
classifier is the mean prediction of the underlying 10 clas-
sifiers. The standard deviation of the score indicates how
much the 10 subclassifiers agree with one another. We
consider a prediction to be a positive prediction (i.e. the
protein is toxin like) if the mean is far greater than the
standard deviation, suggesting a robust hypothesis, which
is not biased by any specific set of false instances. In a
3-fold cross-validation test, the performance of the classi-
fier was measured by the area under curve (AUC; maximal
success is translated to AUC= 1.0). The classifier showed
a high level of success, with a mean AUC of 0.9934
(SD=0.0026). Two of the most dominant features
found to improve the quality of the classifier were asso-
ciated with the frequency and distribution of cysteine
residues within the primary sequence, which are indeed,
crucial structural factors underlying toxins stability. Vali-
dation tests for the functional enrichment of keywords for
positively predicted sequences and a formal description of
the classifier and training set construction are shown in
‘Details’ section of the ClanTox website.

Proteome-wide screening for toxin-like prediction

An attractive application for ClanTox is the screening
of cDNA libraries, EST collections and RNA-Seq of com-
plete genomes for toxin-like proteins. At present, there
are hundreds of multi-cellular genomes that are fully or

partially sequenced. Any set of protein sequences can be
retrieved from PIR (12), SRS (13) or UniProtKB (14) and
then tested by ClanTox. Testing the level of prediction
in several non-venomous model organisms (mammals,
fruit fly and worm) indicated that for short sequences
(protein length 20–160 amino acids), positive prediction
(marked as P1–P3) accounts for 3–9% of the sequences.
The positive predictions drop to only �1–3% when the
entire range for protein length is included (data not
shown).

An interesting test case is the analysis of snakes
(Taxonomy ID: 8570). Among the snakes, the largest
two snake families are Elapids and Vipers. Elapids com-
prise the biggest family of land (found in tropical and
subtropical regions) and sea snakes (mostly found in
Indian and the Pacific oceans). Vipers comprise a family
of venomous snakes found all over the world (except in
Australia and Madagascar). There are 797 and 354 short,
full-length sequences (defined as above) from Elapids
(Taxonomy ID: 8602) and Vipers (Taxonomy ID: 8690),
respectively. ClanTox positively predicted most of these
sequences (86% in Elapids and 76% in Vipers) as toxins
and toxin-like (Table 1). Positive predictions are some-
what arbitrarily partitioned into three levels from P3
(most significant) to P1 (less significant).

Investigating the prediction performance for major
classes of toxins revealed that each toxin type (i.e.
PLA2) shows a tendency for a unique prediction level.
For example, the Elapid PLA2 is mostly predicted at a
P1 level, while toxins from Vipers including Ammodytin,
a myotoxic phospholipase-like protein, are mostly
detected at a P2 level. Other toxin classes like Elapid
Cardiotoxin and Cytotoxin are mostly predicted at a P3
level. More importantly, the number of toxins that were
miss, is negligible (Table 1, N prediction for only 1 out of
449 sequences).

USER PERSPECTIVE AND WEB INTERFACE

Input

ClanTox receives a set of �10 000 protein sequences as
free text in an input box or as an uploaded file in
FASTA text format. Following transformation of the
sequences to a numerical vector and the activation of
the classifier, the results are presented as a ranked list of
all input proteins, sorted by the predictive score.

Prediction

The classifier presents four labels—N for negative predic-
tion and P1–P3, reflecting three levels of positive predic-
tions for toxin-like sequences. The most significant
predictions (labeled P3) accounts for proteins with a
mean score >0.2 as well as having a coefficient of variation
(CV) <0.5. The negative predictions (i.e. predicted as
non-toxin) account for all sequences with a mean score
<–0.2 (Figure 1). For definitions of the prediction labels
see ‘Details’ section.

W364 Nucleic Acids Research, 2009, Vol. 37,Web Server issue



Display of prediction results

The results of the classifier are displayed in a series of
presentations (Figure 2):

(i) A summary and a pie chart of the predictions for all
the submitted sequences �P3 to P1; most confident
to least confident prediction and N; high confidence
for negative prediction (Figure 2A).

(ii) A detailed table of predictions (Figure 2B) including
quantitative details and information from external
prediction tools.

(iii) A histogram of the mean scores (ranging from –1.0
to 1.0) for the entire set of input sequences
(Figure 2C).

(iv) A graphical representation of the protein, focused
on cysteine’s appearance along the sequence
(Figure 2D).

Extended data for ClanTox prediction

A detailed table is associated with each sequence showing:
(i) the accession number and ID based on UniProtKB
identifiers; (ii) the protein name; (iii) the protein length
in amino acids; (iv) the number of cysteines in the
sequence; (v) the prediction confidence level, color-
coded; (vi) the mean score (ranging from –1.0 to 1.0)
and (vii) the standard deviation (SD) reported by the
meta-classifier. Additional information is provided
(if available in the sequence header) including (viii)
whether the sequence is annotated as consisting of a pro-
tein fragment (Frag) and (ix) the organism’s official name.
In addition to textual output, each sequence can be viewed
in the table as a graphical representation, showing the
sequence as a bar (not to scale) with indication of the
cysteine residue locations.
Additional information for each of the sequence is

obtained through an active link to the UniProtKB page
and to the ProtoNet (15) protein card. Users can activate,
for each sequence from the ClanTox candidate list, the
following tools: (i) a NCBI BLAST search to detect
related sequences; (ii) a ProtoNet search (15) providing a
cluster that best fits the sequence selected (the view
through the ProtoNet hierarchical tree presents the most
relevant protein family from the UniProtKB sequence
database. ProtoNet clusters typically provide a rich set
of annotations associated with the members of the rele-
vant cluster) and (iii) detection of signal- peptides based
on the SignalP 3.0 program (17). SignalP predicts the pres-
ence of a signal peptide at the amino terminal of the
sequence (tuned for eukaryotes). The detailed
table created by ClanTox can be sorted by any of its col-
umns (Figure 2B). Positive predictions that fail to be pre-
dicted as secreted proteins should be considered
suspicious. This is extended also to proteins that include
known subcellular signatures such as the ER retention
signal or the Glycosylphosphatidylinositol (GPI) anchor.

Download options

ClanTox provides several download options. The results
can be downloaded in tabular format, as a flat file of
selected FASTA sequences and as a list of UniProtKB
ID. Several optional filters are used to limit the down-
loaded list according to the prediction labels (P3, P2, P1
and N).

Interface with external servers

We selected a small set of tools that provide crucial and
complementary knowledge for the effective analysis of
toxin-like proteins. These include: the SDPMOD, a
homology modeling tool that specializes in structures of
small disulfide-rich proteins (18); PANDORA (19), which
provides an annotation-driven analysis and visualization
for the candidate sequences. PANDORA is compatible
with the FASTA format of UniProtKB ID as made avail-
able by the ClanTox download functionality.
ClanTox helps new users by providing answers to fre-

quently asked questions (FAQ). Furthermore, sequence
retrieval servers are listed to support the user in compiling

Figure 1. Score distribution for the non-redundant set of all �30 000
SwissProt proteins shorter than 150 amino acids. The proteins that
were used for the classifier positive training set were excluded.
Positive and secured prediction scores are (P2–P3) assigned to the tail
of the distribution with a mean score >0.2. The intermediate levels of
score ranging between –0.2 and 0.2 are considered probable/possible
toxin-like. More refined positive prediction confidence (marked as P3,
P2 and P1) is defined according to the scale of the SD relative to the
mean score. The negative prediction (N) is associated with a mean score
<–0.2 that includes the large Gaussian-like distribution for the vast
majority of the proteins.

Table 1. ClanTox predictions of Elapids and Vipers short proteins

Taxonomy toxin family P3 P2 P1 N Total

Elapids 291 147 260 99 797
Cardiotoxin 40 4 1 0 45
Cytotoxin 44 0 1 0 45
PLA2 2 20 115 1 137

Vipers 79 142 47 86 354
Disintegrin 32 14 3 0 49
Ammodytin 24 71 15 0 110
PLA2 14 36 13 0 63

The dominating prediction level for each toxin family type is marked
in bold. PLA2, phospholipase A2.
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Figure 2. Screenshots of the ClanTox result page. (A) A pie chart displaying the distribution of prediction classes for 526 short sequences (20–160
amino acids) retrieved from the Drosophila proteomes following filtration of all sequences that contain fragments. The positive predictions (P1–P3)
constitute 5.9% of the sequences and are marked in shades of red (P3) to light pink (P1). (B) A detailed table of toxin-like proteins predictions sorted
by the number of cysteines (Cys). Few examples labeled as P3 (red), P2 (light red) and N (gray) are shown. Together with the ID column, a graphical
scheme is used to represent protein sequences (not to scale, light blue bar) marked by cysteine residue distribution (red vertical bars). In addition,
the table shows the protein names, UniProtKB accession, the number of cysteines, sequence length, the mean score and standard deviation (SD).
Several links to external tools are presented for each predicted protein. (C) Histogram of mean scores for the 526 Drosophila sequences that are used
as input. The positive predictions are color coded as in A. Most sequences were predicted negative and are shown in gray. (D) A cysteine centric
view, the sequences shown by their relative length. Cysteines are marked as red vertical lines.

W366 Nucleic Acids Research, 2009, Vol. 37,Web Server issue



sequence sets to be analyzed by ClanTox. Using the
UniProtKB search engine, the user can retrieve sequences
starting with a list of IDs or accession numbers for obtain-
ing associated annotations, cross-references and addi-
tional functional information. The user can alternatively
use batch retrieval systems such as PIR (12) and SRS (13)
to obtain a sequence sets for analysis. PICR (20)
allows cross-referencing between alternative identifiers
and can be used as a preprocessing step that leverages
additional identifiers used by other major proteome
resources.

Update and future development

ClanTox will be extended in two main directions: (i)
adding analysis tools that will be locally inserted. Such
tools will include disulfide-connectivity servers, 3D pre-
dicted structures and functional inference tools; (ii) incor-
porating the presence of the signal peptide and the
properties of the cysteine disulfide connectivity predictions
into the framework of the machine-learning scheme. Web
server developers, which are interested in interfacing
directly with ClanTox should contact the authors.

CONCLUSIONS

In recent years, a handful of toxins and toxin-like proteins
have been identified. The Tox-Prot database (2) was devel-
oped to enable the systematic annotation of proteins,
which act as animal toxins and are produced by venomous
and poisonous animals. A related resource covering about
3000 manually annotated toxins from UniProtKB has
even introduced a specialized toxin ontology (TO) (21).
While all these resources depend on manual annotations
and on expert contributions, ClanTox provides a systema-
tic scheme for proteome-wide prediction of toxin-like pro-
teins. Furthermore ClanTox acts also on non-venomous
organisms to detect toxin-like proteins that, to date, are
only sporadically identified. It is suggested that in evolu-
tionary terms, toxins are homologs of toxin-like proteins
that often act as modulators of channels and receptors at
the cell membrane. By using ClanTox to rank the statisti-
cally significant sequences matching toxin-like criteria,
the user can focus on a relatively small fraction of
high-confidence candidates. These positively predicted
sequences can then be further challenged by a set of
tools and predictors directly from the ClanTox results
table. Information on the validity of the signal peptide,
the distribution and connectivity of cysteine residues
from the primary sequence (22) and the functional class
based on disulfide connectivity patterns (23) will fill the
gap in knowledge for many of the overlooked short and
cysteine-rich proteins.
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